Modules Whose Endomorphism Rings are Baer

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Endomorphism Rings of Protective Modules

The object of this paper is to study the relationship between certain projective modules and their endomorphism rings. Specifically, the basic problem is to describe the projective modules whose endomorphism rings are (von Neumann) regular, local semiperfect, or left perfect. Call a projective module regular if every cyclic submodule is a direct summand. Thus a ring is a regular module if it is...

متن کامل

Endomorphism Rings of Modules over Prime Rings

Endomorphism rings of modules appear as the center of a ring, as the fix ring of a ring with group action or as the subring of constants of a derivation. This note discusses the question whether certain ∗-prime modules have a prime endomorphism ring. Several conditions are presented that guarantee the primeness of the endomorphism ring. The contours of a possible example of a ∗-prime module who...

متن کامل

Modules whose direct summands are FI-extending

‎A module $M$ is called FI-extending if every fully invariant submodule of $M$ is essential in a direct summand of $M$‎. ‎It is not known whether a direct summand of an FI-extending module is also FI-extending‎. ‎In this study‎, ‎it is given some answers to the question that under what conditions a direct summand of an FI-extending module is an FI-extending module?

متن کامل

Modules with Dedekind Finite Endomorphism Rings

This article is a survey of modules whose endomorphism rings are Dedekind finite, Hopfian or co-Hopfian. We summarise the properties of such modules and present unified proofs of known results and generalisations to new structure theorems. MSC 2010. 16S50, 16D80.

متن کامل

Direct-sum decompositions of modules with semilocal endomorphism rings

Let R be a ring and C a class of right R-modules closed under finite direct sums. If we suppose that C has a set of representatives, that is, a set V(C) ⊆ C such that every M ∈ C is isomorphic to a unique element [M ] ∈ V(C), then we can view V(C) as a monoid, with the monoid operation [M1] + [M2] = [M1 ⊕M2]. Recent developments in the theory of commutative monoids (e.g., [4], [15]) suggest tha...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Asian Research Journal of Mathematics

سال: 2019

ISSN: 2456-477X

DOI: 10.9734/arjom/2019/v13i230104